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Abstract

The geometric phase of a qubit asymmetrically coupled to the outer bosonic
environment is studied. We demonstrate that with the change of the coupling
asymmetry, the geometric phase can exhibit a cascade of bifurcations and
therefore can be useful for testing the asymmetry coupling.

PACS numbers: 03.65.Yz, 03.65.Vf, 03.67.−a

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Quantum computation and effective quantum information storage require methods and tools
to overcome, or at least to reduce, decoherence processes in quantum information units which
are always influenced by the environment. In recent years, this problem has been intensively
investigated in a variety of contexts and aspects. The coupling of quantum units (qubit, qutrits,
etc) to the outer environment can be symmetric or asymmetric. The question is whether the
coupling symmetry breaking can be recognized or maybe it does not matter what symmetry
of coupling is. We pose this problem and want to answer the above question. To this aim,
we consider a qubit (a two-level system) coupled to a bosonic environment. We analyze a
particular example of environmental effects: dephasing or pure decoherence. The coupling
is via an integral of motion and in consequence the system does not exchange energy with
the environment. The only exchange with the environment is information. We extend our
previous study [1] to the case when each level of a qubit can be coupled to the environment in a
different fashion, i.e. non-symmetrically. It allows us to consider a class of qubit–environment
Hamiltonians ranging from the most popular one, the isotropic van Hove model [2], up to the
Friedrichs model [3] for which only one of the two levels is coupled to the environment. We
study properties of the geometric phase (GP), gained by the qubit in a (quasi) cyclic evolution.
In some regimes, the GP is sensitive to the symmetry of the coupling: for symmetric coupling,
the GP is a monotonic function of the angle (which defines the initial state of the qubit as
a linear combination of two canonical basic states of the qubit); for asymmetric coupling, it
is a non-monotonic function of the angle and can exhibit bifurcations when the asymmetry
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coupling is changed. Therefore in such regimes, the GP can be a tool for detecting and
quantifying the asymmetry of the dephasing environment, i.e. the GP is an ‘observable’ for
testing details of microscopic modeling at the Hamiltonian level. In other regimes, the GP
does not change its monotonicity with respect to the angle.

Studies of a GP of a quantum system start from the classical Pancharatnam notion and
quantum Berry phase [4] factor in the adiabatic and cyclic unitary evolution of non-degenerate
states. There are plenty of generalizations including nonadiabatic [5], noncyclic and even
nonunitary evolution of the quantum state. As a general reference one can consult, e.g. [6].
The extension to the mixed states has been proposed first in [7] in a purely mathematical
fashion and in [8] for unitary evolutions with a clear interferometric interpretation. At the
same time the notion of GP becomes more and more attractive for quantum information due
to its possible application for geometric or holonomic quantum computation as a means of
constructing built-in fault tolerant quantum logic gates [9–11]. As it is much less dependent
on the details of the time evolution it may be less affected by uncontrolled fluctuations and
therefore more robust against certain sources of perturbations.

2. Asymmetric dephasing

We consider a qubit Q, formed by an arbitrary two-level system (e.g. a spin-1/2 particle)
for which {|1〉, |−1〉} is its canonical basis. The qubit is coupled to the environment R. The
coupling is such that there is no energy dissipation. However, there is an irreversible process
of information loss [19]. It can be modeled by the Hamiltonian [12, 13]

H = HQ + HR + HI , HQ = εSz ⊗ IR, HR = IQ ⊗ HB, (1)

where the qubit Hamiltonian HQ is defined by the z-component of the spin operator
Sz = |1〉〈1| − |−1〉〈−1| and the energy levels are E = ±ε. The operators IQ and IR

are identity operators (matrices) in the corresponding Hilbert spaces of the qubit and the
environment, respectively. The environment is composed of bosons for which the Hamiltonian
HB reads

HB =
∫ ∞

0
dω h(ω)a†(ω)a(ω), (2)

where the real-valued dispersion relation h(ω) specifies the environment, a†(ω) and a(ω) are
the creation and annihilation boson operators, respectively. The qubit–environment interaction
is described by the Hamiltonian

HI = |1〉〈1| ⊗ H+ + |−1〉〈−1| ⊗ H−, (3)

H± = ±
∫ ∞

0
dω[g∗

±(ω)a(ω) + g±(ω)a†(ω)], (4)

where g±(ω) are the coupling functions and g∗
±(ω) are the complex conjugate functions to

g±(ω), respectively. The Hamiltonian (1)–(4) can be rewritten in the form

H = |1〉〈1| ⊗ H1 + |−1〉〈−1| ⊗ H−1, H1/−1 = HB + H± ± ε. (5)

Hamiltonians like (5) has been used to study the electron-transfer reactions [14] and the
interconversion of electronic and vibrational energy [15]. With a similar structure, they have
been considered to analyze a quantum kicked rotator [16], chaotic dynamics of a periodically
driven superconducting single electron transistor [17] and the Josephson flux qubit [18]. The
model may also serve as a component of a simple quantum register [19]. Moreover, it contains,
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as particular cases, the widely used van Hove model [2, 13, 20] (for g+ = g−) and the Friedrichs
model [3] (for either g+ = 0 or g− = 0).

We can directly apply results of [21] to the Hamiltonian (5) and solve the corresponding
Schrödinger equation. To do it, let us specify an initial state of the system assuming a product
state, namely,

|�(0)〉 = (b1|1〉 + b−1|−1〉) ⊗ |R〉, (6)

where b1 and b−1 determine the qubit states and |R〉 is the initial state of the environment with
the Hamiltonian (1). The state (6) evolves as follows [21]:

|�(t)〉 = b1 e−i�1(t)|1〉 ⊗ D
(
gt

1 − g1
)

e−iHBt |R〉,
+ b−1 e−i�−1(t)|−1〉 ⊗ D

(
g−1 − gt

−1

)
e−iHBt |R〉, (7)

where the phases �1(t) and �−1(t) have the form

�1(t) = εt −
∫ ∞

0
dω|g1(ω)|2{h(ω)t − sin[h(ω)t]},

�−1(t) = −εt −
∫ ∞

0
dω|g−1(ω)|2{h(ω)t − sin[h(ω)t]} (8)

and the abbreviations

g1(ω) = g+(ω)

h(ω)
, g−1(ω) = g−(ω)

h(ω)
(9)

have been introduced. For any function g, the notation gt means gt (ω) = e−ih(ω)tg(ω). The
displacement operator D(g) = exp[a†(g)−a(g)] [20, 22, 23], where a(g) = ∫ ∞

0 dω g(ω)a(ω)

for an arbitrary square-integrable function g.

3. Exact reduced dynamics

We are not interested in full information on the total system: qubit + environment. Rather
influence of the environment and dynamics of the qubit alone is desired. The qubit dynamics
can be obtained for initial states like (6) or for a larger class of states defined by the initial
statistical operator (density matrix) �(0) of the total system,

�(0) =
∑

i,j=1,−1

pij |φi〉〈φj | ⊗ |R〉〈R|, (10)

where |φi〉 = |i〉, i = ±1 are vectors of the qubit Hilbert space and pij are non-negative
parameters. The reduced statistical operator ρ(t) for the qubit only can be expressed in the
forms

ρ(t) = TrR[�(t)] =
∑

i,j=1,−1

pij |φi〉〈φj | ⊗ TrR(e−iHi t |R〉〈R| eiHj t )

=
∑

i,j=1,−1

pij 〈 e−iHj tR| e−iHitR〉|φi〉〈φj |, (11)

where TrR denotes partial tracing over the environment. So, if we are able to calculate the
scalar product in the Hilbert space of environment then the reduced dynamics is exactly
constructed. We consider the simplest case assuming the initial state to be a vacuum, i.e.
|R〉 = |
〉. For the initial qubit state

|φ(0)〉 = cos(θ/2)|1〉 + sin(θ/2)|−1〉 (12)
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parametrized by the angle θ , the statistical operator ρ(t) for the reduced qubit dynamics takes
the matrix form

ρ(t) =
(

cos2(θ/2) (1/2)A(t) sin θ

(1/2)A∗(t) sin θ sin2(θ/2)

)
. (13)

This formula defines the asymmetric dephasing channel E : ρ(0) → ρ(t), where the influence
of the infinite bosonic environment is represented by the function

A(t) = Ad(t) exp[−i�(t)]. (14)

The phase part

�(t) = �1(t) − �−1(t). (15)

The damping part reads

Ad(t) = 〈
|D(
gt

1 − g1 + gt
−1 − g−1

)|
〉 = exp[−r(t)] (16)

with

r(t) =
∫ ∞

0
dω|g1(ω) + g−1(ω)|2{1 − cos[h(ω)t]}. (17)

In the following we assume the ‘linear’ environment defined by the dispersion relation
h(ω) = ω. The coupling to the environment is encoded in the coupling functions
gi(ω), i = 1,−1. For convenience, we can assume that they are real functions. The form
of the damping function (17) suggests that the interaction can be modeled by the spectral
densities [12]

Ji(ω) = ω2gi(ω)2 = λiω
1+μi exp

(−ω
/
ωc

i

)
(18)

for i = 1,−1 and μi > −1. The above form of the spectral densities Ji(ω) is well known
in the literature. The case μi ∈ (−1, 0) corresponds to sub-Ohmic, μi = 0 to Ohmic and
μi ∈ (0,∞) to super-Ohmic environments. To avoid mathematical difficulties mentioned in
[13] we limit our discussion to the super-Ohmic environment where there is no controversy
concerning the existence of the ground state. Then the damping function takes the form

r(t) = L(λ1, μ1; t) + L(λ−1, μ−1; t) + 2L
(√

λ1λ−1,
μ1 + μ−1

2
; t

)
, (19)

where

L(λ, μ; t) = λ�(μ)ωμ
c

[
1 +

cos(μ arctan(ωct))(
1 + ω2

c t
2
)μ/2

]

and �(z) is the Euler gamma function. The oscillatory part introduced by the environment
can also be explicitly evaluated reading

�(t) = 2εt + M(λ1, μ1; t) + N (λ1, μ1; t) − M(λ−1, μ−1; t) − N (λ−1, μ−1; t), (20)

where

M(λ, μ; t) = λω1+μ
c �(1 + μ)t, N (λ, μ; t) = λ�(μ)ω

μ
c sin(μ arctan(ωct))(
1 + ω2

c t
2
)μ/2 . (21)

It finishes a presentation of all elements of the exact reduced dynamics for the qubit.
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4. Geometric phase

There are several extensions of the GP for open systems. They are based on the state
purification, quantum trajectories and quantum interferometry (kinematic approach). Here,
we follow the approach based on the state purification [24]. The reduced density matrix ρ(t)

of the qubit given by equation (13) can be presented in the form

ρ(t) =
2∑

i=1

pi(t)|wi(t)〉〈wi(t)|, (22)

where pi(t) and |wi(t)〉 are eigenvalues and eigenvectors of the matrix (13). The GP �(t)

associated with such an evolution is defined in the following way [24]:

�(t) = arg

[
2∑

i=1

[pi(0)pi(t)]
1/2〈wi(0)|wi(t)〉 exp

(
−

∫ t

0
〈wi(s)|ẇi(s)〉 ds

)]
. (23)

This phase can be measured in some experiments [24].
The evolution of the freely evolving qubit is cyclic with time T = π/ε. In the presence

of the dephasing environment the evolution becomes non-unitary and quasi-periodic. In this
section we discuss the geometric phase �(t) of the qubit initially prepared in the state (12)
calculated at time t = T for ε = 1/2, i.e. � = �(2π). We focus on the role of the coupling
asymmetry. This asymmetry can be parametrized in various ways. Here, it is described by the
parameter δ in the following way:

λ±1 = λ[1 ± δ/100]. (24)

For δ = 0, the coupling is symmetric giving the van Hove model while for δ = 100 the model
reduces to the fully asymmetric, Friedrichs model. First, we consider the symmetric coupling
λ±1 = λ and investigate the role of the coupling strength λ, see the left panel of figure 1. For
the non-coupled case (λ = 0), the GP reads [6]

�0 = π [cos(θ) + 1]. (25)

For weak coupling, the GP is close to that for the non-coupled (isolated) qubit, see the cases
λ = 0.001 and λ = 0.01 in the left panel of figure 1. For strong coupling (the case λ = 0.1
in the left panel of figure 1), the GP changes drastically in the region θ = π/2 and changes
weakly outside this region. Similar behavior is observed when the low-frequency properties
of the environment are changed. They are encoded in the parameters μ±1 = μ. For small
values of μ (weakly super-Ohmic environment or closed to the Ohmic one), the GP is close
to that for the non-coupled qubit, see the cases μ = 0.001 and μ = 0.1 in the right panel
of figure 1. For strongly super-Ohmic environment, the GP changes drastically in the region
θ = π/2 and changes weakly outside this region, see the case μ = 1 in the right panel of
figure 1. The case of asymmetrical coupling is much more interesting: the GP can be a
non-monotonic function and even can jump in dependence of the initial state of the qubit, i.e.
of the angle θ , cf the left panel of figure 2. Moreover, the GP as a function of the asymmetry
parameter δ can exhibit bifurcations. It is presented in the right panel of figure 2 where the
pitchfork bifurcation can be noted. At the bifurcation point δ = δ1, the number of jumps of
the GP changes from one to two. The critical value δ1 is smaller for stronger coupling λ.
If the coupling constant λ is increased, the second pitchfork bifurcation occurs and the second
bifurcation point δ = δ2 > δ1 can be observed, see the left panel of figure 3. For δ > δ2,
there are three jumps of the GP. Further increase the coupling strength λ results in a cascade
of bifurcations, see the right panel of figure 3. It would be interesting to perform a detailed
analysis (if possible at all) of bifurcations and answer several questions like: it is a finite
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Figure 1. The geometric phase � = �(2π) of the qubit in the presence of symmetric coupling to
the environment (the van Hove model) compared with the geometric phase of the freely evolving
qubit (λ = 0). Left panel: fixed μ± = 0.1 and selected values of the coupling strength λ. Right
panel: fixed λ±1 = 0.01 and selected values of μ± = μ which describes low-frequency properties
of the environment: the super-Ohmic case.
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Figure 2. The geometric phase � = �(2π) for the asymmetric coupling of the qubit to the
environment. The asymmetry is parametrized by δ according to equation (24). Left panel: details of
formation of the first jump. Right panel: the first bifurcation and formation of jumps with increasing
asymmetry δ. The selected curves correspond to δ = 0, 10, 30, 70, 100. λ = 0.008, μ±1 = 0.1.

or infinite number of jumps (bifurcation points) as λ grows or can the GP exhibit chaotic
properties. Although it has nothing in common with the Feigenbaum scenario of chaos,
maybe some similarities are hidden in the GP properties. We leave it as an open problem. The
next open problem is related to possible universal properties of jumps. As they form a cascade
of bifurcations, to what extent they appear regularly with respect to e.g. different, comparing
to those chosen in equation (24), parametrization of the asymmetry of coupling.

5. Summary

The GP is an experimentally observable quantity (although not an observable in a strict sense)
which can detect possible anisotropy of dephasing. Measurement of the GP for the set of
initial states (12) allows for the formulation of conclusions directly related to the microscopic
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Figure 3. Bifurcations of the geometric phase � = �(2π) for the asymmetric coupling
parametrized by δ according to equation (24). The selected curves correspond to δ =
0, 10, 30, 70, 100. Left panel: λ = 0.01. Right panel: λ = 0.03. In all cases μ±1 = 0.1.

properties, encoded in the Hamiltonian, of the open qubit system. The GP of a quantum
system is a potential resource for quantum informatics by means of the holonomic quantum
computing. The environment essentially present in each laboratory clearly, in general, spoils
the phase. Robustness of the GP with respect to the environmental effects is a basic condition
for an effective quantum computation. We have shown that even in the presence of the simplest
environment, i.e. dephasing, the GP is very sensitive to its properties. We focused our attention
on the possible asymmetry of the coupling of qubit levels to the bosonic environment. Within
such a model, we have shown that the asymmetry of dephasing results in bifurcations and
formation of jumps in the geometric phase.
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